Compressed self-avoiding walks, bridges and polygons

نویسندگان

  • Nicholas R Beaton
  • Anthony J Guttmann
  • Iwan Jensen
  • Gregory F Lawler
چکیده

We study various self-avoiding walks (SAWs) which are constrained to lie in the upper half-plane and are subjected to a compressive force. This force is applied to the vertex or vertices of the walk located at the maximum distance above the boundary of the half-space. In the case of bridges, this is the unique end-point. In the case of SAWs or self-avoiding polygons, this corresponds to all vertices of maximal height. We first use the conjectured relation with the Schramm–Loewner evolution to predict the form of the partition function including the values of the exponents, and then we use series analysis to test these predictions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Honeycomb lattice polygons and walks as a test of series analysis techniques

We have calculated long series expansions for self-avoiding walks and polygons on the honeycomb lattice, including series for metric properties such as mean-squared radius of gyration as well as series for moments of the area-distribution for polygons. Analysis of the series yields accurate estimates for the connective constant, critical exponents and amplitudes of honeycomb self-avoiding walks...

متن کامل

Self-avoiding walks and polygons on the triangular lattice

We use new algorithms, based on the finite lattice method of series expansion, to extend the enumeration of self-avoiding walks and polygons on the triangular lattice to length 40 and 60, respectively. For self-avoiding walks to length 40 we also calculate series for the metric properties of mean-square end-to-end distance, mean-square radius of gyration and the mean-square distance of a monome...

متن کامل

Self-avoiding walks and polygons on quasiperiodic tilings

We enumerate self-avoiding walks and polygons, counted by perimeter, on the quasiperiodic rhombic Penrose and Ammann-Beenker tilings, thereby considerably extending previous results. In contrast to similar problems on regular lattices, these numbers depend on the chosen initial vertex. We compare different ways of counting and demonstrate that suitable averaging improves convergence to the asym...

متن کامل

Exact solution of two classes of prudent polygons

Prudent walks are self-avoiding walks on a lattice which never step into the direction of an already occupied vertex. We study the closed version of these walks, called prudent polygons, where the last vertex of the walk is adjacent to its first one. More precisely, we give the half-perimeter generating functions of two subclasses of prudent polygons on the square lattice, which turn out to be ...

متن کامل

Polygons and the Lace Expansion

We give an introduction to the lace expansion for self-avoiding walks, with emphasis on self-avoiding polygons, and with a focus on combinatorial rather than analytical aspects. We derive the lace expansion for self-avoiding walks, and show that this is equivalent to taking the reciprocal of the self-avoiding walk generating function. We list some of the rigorous results for self-avoiding walks...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016